

Utilisation, infiltration, retention, treatment, fire-fighting water provisioning

This shallow rainwater infiltration system is suitable for private, commercial and public applications. It offers a high traffic loading capability, including HGVs (live load SLW 60), accessibility to all areas of the system, and a flexible, simple design.

- C35/45 reinforced concrete half-shells with monolithic structure
- Access through saddle piece

1

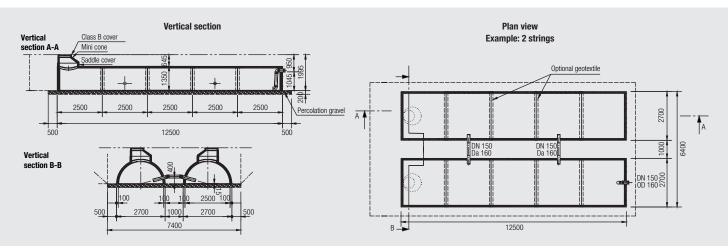
- Structure optional: cone or cover plate and shaft cover, class B or class D for SLW 60
- Internal height of >1 m, accessed in accordance with DGUV (German Social Accident Insurance) regulation 103-003
- Special pre-filter fleece on the base prevents the entry of fine filterable substances (option).

CaviLine - individual components

	ononto					
Components	Volume	Length I	Width w	Height h	Infiltration area	Weight
	m ³	mm	mm	mm	m²	kg
Tunnel element	6.10	2500	2500	1250	9.25	2,500
Tunnel end element	5.90	2400	2500	1250	11.10	3,230
Tunnel end element with access	5.90	2400	2500	1250	11.40	3,250
Saddle piece for shaft construction	_	-	_	_	-	210
Filter fleece for base cover	-	-	-	-	-	-

CaviLine - system packages

CaviLine type	Length outside m	Volume m ³	Width infiltration area m	Heaviest single weight kg	Total weight kg	Number of strings
25-1-2	5.00	11.80	3.70	3,250	6,800	1
25-1-3	7.50	17.90	3.70	3,250	9,300	1
25-1-4	10.00	24.00	3.70	3,250	11,800	1
25-1-5	12.50	30.10	3.70	3,250	14,640	1
25-1-6	15.00	36.20	3.70	3,250	17,140	1
25-1-7	17.50	42.30	3.70	3,250	19,640	1
25-1-8	20.00	48.40	3.70	3,250	22,140	1
25-2-5	12.50	60.20	7.40	3,250	29,280	2
25-2-6	15.00	72.40	7.40	3,250	34,280	2
25-2-7	17.50	84.60	7.40	3,250	39,280	2
25-2-8	20.00	96.80	7.40	3,250	44,280	2
25-3-6	15.00	108.60	11.10	3,250	51,420	3
25-3-7	17.50	126.90	11.10	3,250	58,920	3
25-3-8	20.00	145.20	11.10	3,250	66,420	3
25-3-9	22.50	163.50	11.10	3,250	73,920	3


Infiltration performance calculated for: Distance between individual strings min. 1.00 m, working space 0.5 m on all sides, substructure min. 0.25 m infiltration gravel Note: Installation depths > 3 m require lean concrete foundation strip – see installation instructions at www.mall.info – max. installation depth: 5 m

Accessories

Order number	
418741	Elastomer strip SBR-65 – L/W/H=250/10/1 cm – mortar substitute
418297	Drainage pipe DN 150 – connection pipe for multiple-string systems
705092	Inlet fitting KG 2000 PP standard: DN 150
412526	Separating fleece RBK 3 for covering butt joints – pre-fabricated concrete components
417589	Pre-filter matt on trench base – colmation protection W/L=250/600 cm
416494	Joint sealing tape for shaft connection rebate DIN 4034-2 (accesses)

■ Shaft rings, cones, covers class A, B, D for accesses, see Chapter 8.

Pre-treatment with sedimentation, lamellae or filter systems (see Chapter 1 Rainwater treatment)

environmental systems

Animation and installation videos at:

www.mall.info/tv

Mall ViaPart throttle devices for partial flow treatment

The term "partial flow treatment" is used when the volume flow in wastewater treatment splits into various partial flows that are treated in different ways. The Q_r orit partial flow is directed through the treatment plant, the Q_o partial flow is discharged directly into the outlet channel without treatment.

Benefits of partial flow treatment

Partial flow treatment means that the treatment plant needs to be designed only for a fraction of the actual rainfall or measured rainfall intensity. This means that it may be possible to connect up to 10 times the surface area to a treatment plant.

Partial flow treatment therefore entails significant cost savings!

The degree of efficiency of the overall treatment package is reduced as untreated water enters the outlet channel. It can be adjusted, however, to requirements by the choice of partial flow volume.

The following product lines are available for splitting water flows:

Designation ViaPart	Restrictor design	Container form	Integrated raised divider	Controlled outlet volume
DR R	Discharge regulator	Round	No	3 – 125 l/s
DR R T	Discharge regulator	Round	Yes	3 – 15 l/s
VV R	Vortex valve	Round	No	3 – 125 l/s
VV R T	Vortex valve	Round	Yes	3 – 15 l/s
RGV R	Regulating gate valve	Round	No	3 – 125 l/s
RGV R T	Regulating gate valve	Round	Yes	3 – 15 l/s

Special geometries can be produced on request for discharge barriers, pipe insertions, pump sumps and ground discharge points (for maintenance work). It may be worth arranging in a rectangular or square shaft.

Explanation of restrictor componentry

- DR Discharge regulator: Float-controlled discharge regulator with high selectivity, readjustable, discharge constant irrespective of system pressure, rule of thumb: Dam height = inner diameter
- W Vortex valve: Flow restriction by hydraulic vortex. Discharge virtually constant irrespective of system pressure, not adjustable, no moving parts
- RGV Regulating gate valve regulates the discharge by setting the gate to a defined fixed position. Discharge dependent on system pressure, therefore usable only with slight water level differences
- T Shaft with integrated relief (raised divider)
- H Auxiliary float: Application in deep water or where controlled discharge is absent (in the case of rainwater retention basins), opens the entire cross-section briefly if maximum water level is exceeded available as special solution
- G Low-level outlet: For complete emptying of the shaft for maintenance work available as special solution
- Z Installation in the inlet of the throttle constrictor facilitates maintenance including while operating the restrictor. Recommended for systems with continual discharge (external water) – available as special solution

The blur factor (BF) in the following graphics indicates how precisely the various restrictor components are able to meet the required value in different operating conditions. Components downstream of the throttle constrictor increase by the factor BF.

	Blur factor (BF) – examples
Discharge regulatorBF = 1.0	Sizing requirement 10 l/s, sizing value 10 l/s
Vortex valve $BF = 1.2$	Sizing requirement 10 l/s, sizing value 12 l/s
Regulating gate valveBF = 1.5	Sizing requirement 10 l/s, sizing value 15 l/s
ViaSep BF = 2.0	Sizing requirement 10 l/s, sizing value 20 l/s

Mall bypass throttle ViaFlow (see page 11)

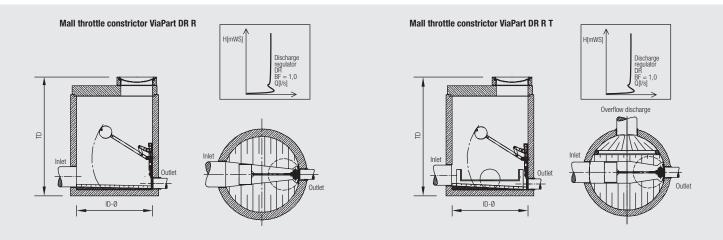
The ViaFlow system type is equipped both with an orifice plate and a retention space – specific dimensioning is required. The storage volume contents are pumped into the outlet pipe with time delay. No removal line is required.

Webcode M3315 Q

Mall throttle constrictor ViaPart DR R

for flow restriction downstream of relief structure ViaSep

- C35/45 reinforced concrete round tank with monolithic structure, joining as per DIN 4034-2
- Cover plate and cover, if necessary class D (SLW 60)
- With ready fitted discharge regulator according to connection width and flow rate
- Articulated permanently elastic pipe connection for plastic pipes in outlet according to restriction device, in inlet according to infeed nominal width, other pipe materials and nominal widths on request (additional charge incurred from DN 600)


Order number	Run-off capacity	Interior Ø ID	Total depth TD	Inlet	Outlet	Heaviest single weight	Total weight
	l/s	mm	mm	DN	DN	kg	kg
Part DR R 3	3	1200	2085	250	100	2,720	3,610
Part DR R 6	6	1200	2085	250	100	2,720	3,610
Part DR R 9	9	1200	2085	300	150	2,710	3,610
Part DR R 10	10	1500	2350	400	150	3,860	5,280
Part DR R 15	15	1500	2350	400	200	3,860	5,280
Part DR R 20	20	1500	2350	500	200	3,840	5,280
Part DR R 25	25	1500	2350	500	200	3,840	5,280
Part DR R 30	30	1500	2350	500	250	3,830	5,280
Part DR R 35	35	1500	2350	600	250	3,810	5,280
Part DR R 50	50	2000	2970	600	300	6,790	9,530
Part DR R 75	75	2000	2970	700	300	6,760	9,530
Part DR R 100	100	2000	2970	800	400	6,720	9,530
Part DR R 125	125	2000	2970	800	400	6,720	9,530

Mall throttle constrictor ViaPart DR R T

for flow restriction with integrated relief structure ViaSep

- C35/45 reinforced concrete rectangular tank with monolithic structure
- Cover plate and cover, if necessary class D (SLW 60)
- With ready fitted discharge regulator according to connection width and flow rate, with reinforced concrete threshold with additional opening for removal
- Articulated permanently elastic pipe connection for plastic pipes in outlet according to restriction device, in inlet according to infeed nominal width, other pipe materials and nominal widths on request (additional charge incurred from DN 600)

Order number	Run-off capacity I/s	Interior Ø ID mm	Total depth TD mm	Inlet DN	Outlet DN	Heaviest single weight kg	Total weight kg
Part DR R T 3	3	1200	2180	250	100	2,780	3,690
Part DR R T 6	6	1200	2180	250	100	2,780	3,690
Part DR R T 9	9	1200	2180	300	150	2,770	3,700
Part DR R T 10	10	1500	2350	400	150	3,940	5,400
Part DR R T 15	15	1500	2350	400	200	3,930	5,390

1

Mall GmbH, Technical data 2022

Webcode M3315 Q

with vortex valve for partial flow treatment and upstream relief structure ViaSep

- C35/45 reinforced concrete round tank with monolithic structure, joining as per DIN 4034-2
- Cover plate and cover, if necessary class D (SLW 60)

environmental systems

- With ready fitted vortex valve according to connection width and flow rate
- Articulated permanently elastic pipe connection for plastic pipes in outlet according to restriction device, in inlet according to infeed nominal width, other pipe materials and nominal widths on request (additional charge incurred from DN 600)

Order number	Run-off capacity I/s	Interior Ø ID mm	Total depth TD mm	Conne Inlet DN	ections Outlet DN	Heaviest single weight kg	Total weight kg
Part VV R 3	3	1200	2085	250	100	2,720	3,610
Part VV R 6	6	1200	2085	250	100	2,720	3,610
Part VV R 9	9	1200	2085	300	150	2,710	3,610
Part VV R 10	10	1500	2350	400	150	3,860	5,280
Part VV R 15	15	1500	2350	400	200	3,860	5,280
Part VV R 20	20	1500	2350	500	200	3,840	5,280
Part VV R 25	25	1500	2350	500	200	3,840	5,280
Part VV R 30	30	1500	2350	500	250	3,830	5,280
Part VV R 35	35	1500	2350	600	250	3,810	5,280
Part VV R 50	50	2000	2970	600	300	6,790	9,530
Part VV R 75	75	2000	2970	700	300	6,760	9,530
Part VV R 100	100	2000	2970	800	400	6,720	9,530
Part VV R 125	125	2000	2970	800	400	6,720	9,530

Mall throttle constrictor ViaPart VV R T

with vortex valve for flow restriction and integrated relief structure ViaSep

- C35/45 reinforced concrete round tank with monolithic structure, joining as per DIN 4034-2 with integrated overflow threshold and connection for relief line
- Cover plate and cover, if necessary class D (SLW 60)
- With ready fitted vortex valve according to connection width and flow rate
- Articulated permanently elastic pipe connection for plastic pipes in outlet according to restriction device, in inlet according to infeed nominal width, other pipe materials and nominal widths on request (additional charge incurred from DN 600)

Order	Inlet	Interior Ø	Total depth	Connections		Heaviest	Total weight
number	max./outlet I/s	ID mm	TD mm	Inlet DN	Outlet DN	single weight kg	kg 3 690
Part VV R T 3	3	1200	2085	250	100	2,780	3,690
Part VV R T 6	6	1200	2085	250	100	2,780	3,690
Part VV R T 9	9	1200	2085	300	150	2,770	3,690
Part VV R T 10	10	1500	2350	400	150	3,940	5,400
Part W R T 15	15	1500	2350	400	200	3,930	5,390

Mall throttle constrictor ViaPart VV R T

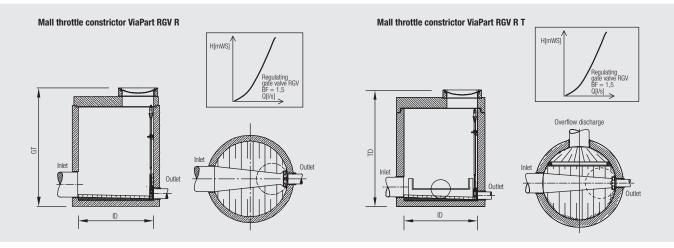
Webcode M3315 Q

Mall throttle constrictor ViaPart RGV R

with regulating gate valve, characteristic curve for flow restriction and upstream relief structure ViaSep

- C35/45 reinforced concrete round tank with monolithic structure, joining as per DIN 4034-2
- Cover plate and cover, if necessary class D (SLW 60)
- With ready fitted regulating gate valve with characteristic curve according to connection width and flow rate
- Articulated permanently elastic pipe connection for plastic pipes in outlet according to restriction device, in inlet according to infeed nominal width, other pipe materials and nominal widths on request (additional charge incurred from DN 600)

Order number	Run-off capacity	Interior Ø ID	Total depth TD	Conn Inlet	ections Outlet	Heaviest single weight	Total weight
	I/s	mm	mm	DN	DN	kg	kg
Part RGV R 3	3	1200	2135	250	100	2,900	3,680
Part RGV R 6	6	1200	2135	250	100	2,900	3,680
Part RGV R 9	9	1200	2135	300	150	2,880	3,680
Part RGV R 10	10	1500	2400	400	150	4,120	5,360
Part RGV R 15	15	1500	2400	400	200	4,120	5,360
Part RGV R 20	20	1500	2400	500	200	4,100	5,360
Part RGV R 25	25	1500	2400	500	200	4,100	5,360
Part RGV R 30	30	1500	2400	500	250	4,090	5,360
Part RGV R 35	35	1500	2400	600	250	4,060	5,360
Part RGV R 50	50	2000	3020	600	300	7,210	9,630
Part RGV R 75	75	2000	3020	700	300	7,180	9,630
Part RGV R 100	100	2000	3020	800	400	7,130	9,630
Part RGV R 125	125	2000	3020	800	400	7,130	9,630


Mall throttle constrictor ViaPart RGV R T

with regulating gate valve, characteristic curve for flow restriction and integrated relief structure ViaSep

- C35/45 reinforced concrete round tank with monolithic structure, joining as per DIN 4034-2 with integrated overflow threshold and connection for relief line
- Cover plate and cover, if necessary class D (SLW 60)
- With ready fitted regulating gate valve with characteristic curve according to connection width and flow rate

 Articulated permanently elastic pipe connection for plastic pipes in outlet according to restriction device, in inlet according to infeed nominal width, other pipe materials and nominal widths on request (additional charge incurred from DN 600)

Order	Inlet	Interior Ø	Total depth	Connections		Heaviest	Total weight
number	max./outlet I/s	ID mm	TD mm	Inlet DN	Outlet DN	single weight kg	kg 3,750 3,750
Part RGV R T 3	3	1200	2135	250	100	2,950	3,750
Part RGV R T 6	6	1200	2135	250	100	2,950	3,750
Part RGV R T 9	9	1200	2135	300	150	2,940	3,760
Part RGV R T 10	10	1500	2400	400	150	4,200	5,480
Part RGV R T 15	15	1500	2400	400	200	4,180	5,460

Mall bypass throttle ViaFlow

For flow restriction of rainwater when draining properties. Rainwater drainage from property is restricted to the predefined values. Excess water is stored and released with regulation after rainfall.

- Restriction of small volumes of water
- Permissible discharge is primarily drained
- Excess water only is collected
- Energy saving due to direct draining of larger volumes of water (90% for permiss. Q>15 l/s.ha)
- Reduced contamination of collection space

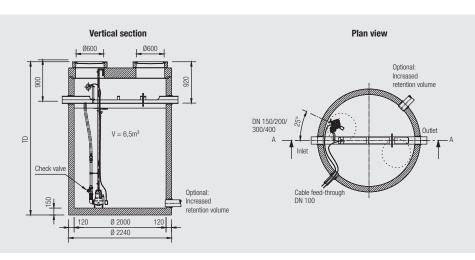
Consisting of:

- C35/45 (B45) reinforced concrete tank with monolithic round structure
- Overflow gutter with integrated orifice plate, spillway crown, emergency overflow
- Pump station for pumping retained water incl. check valve

Order number	Ø Inlet, outlet	Minimum/maxi- mum discharge	Max. connected impermeable	Max. inlet flow for	Diameter	Total depth	Heaviest single weight	Total weight
	mm	l/s	area m²	r 15.1 I/s	mm	mm	kg	kg
ViaFlow 150	150	0.1/3.0	500	7.5	2,000	3,335	7,220	9,320
ViaFlow 200	200	0.3/6.8	1.000	15	2,000	3,335	7,220	9,320
ViaFlow 300	300	0.8/21.0	3,000	45	2,000	3,335	7,220	9,320
ViaFlow 400	400	1.5/46.9	7,000	105	2,000	3,335	7,220	9,320

Excess water occurring during heavy rain only is drained into the collection basin. The permissible critical inlet is directly drained, allowing the larger volume flow to directly drain off. The orifice place is optimised to facilitate maximum opening. Dirt from contaminated areas is drained with the permissible discharge.

The necessary storage volume is calculated according to DWA worksheet 117 dimensioning of retention spaces (12/2007).


Example:

Example	
Connected impermeable area	$A_I = 1000 \text{ m}^2 = 0.1 \text{ ha},$
Project in Stuttgart area, permissible discharge rate	15 l/(s*ha), volume determination for annuality = 5 years
Chosen system:	
ViaFlow 200, configured discharge	$Q_{crit}=0.1ha\cdot15l/(s^{+}ha) = 1.5 l/s = ViaFlow configuration$
From Stuttgart Kostra data:	
Relevant precipitation event from dimensioning:	$r_{60.5} = 84 \text{ l/(s*ha)}$, duration level 60 min
$V_{s,u} = (84 - 15 [l/s^{*}ha]) * 60 [min] * 60[s/min]/1000[l/m^{3}] = 248.4 [r]$	n³/ha]
$V = V_{s,u} \cdot A_1 = 248 \text{ [m}^3/\text{ha}\text{]} * 0.1 \text{ [ha]} = 24.8 \text{ [m}^3\text{]}.$	

The volume from ViaFlow is 6.5 m³. A larger collection volume normally must be created in parallel. Splitting up the required volume into several communicating storage spaces is entirely possible (see Chapter 8).

Benefits:

- Factory-made, tested reinforced concrete parts
- Provision of storage volume without appreciable loss of height
- Reduced contamination of storage volume due to direct draining of heavily contaminated content
- Safe operation due to monitoring of pumps and sensors, alerting in the case of unusual events
- Energy saving of 75 95% over purely a pump solution
- Small outlet volumes reliably maintained
- Controller for internal installation incl. sensors, controller and technical equipment available in various versions

Mall rainwater treatment plants

Mall rainwater treatment plants are used to safeguard waterways and groundwater. They represent an indispensable component in contemporary rainwater management in terms of maintaining a natural water balance. Requirements in particular around the urban climate and in terms of protecting against torrential rainfall make decentralised and flexible solutions a necessity in the separation system.

The technical rules and regulations for the classification of treatment systems are in a state of flux. National statutory specifications (Appendix AbV) do not (yet) exist, DWA worksheet A 102/BWK-A3 is in the drafting and discussion phase. The following classification of Mall rainwater management systems is intended to facilitate proper use against the backdrop of currently valid regulations and trends.

Mall ViaSed sedimentation plant

The "classic" treatment system in use for decades.

For flow throughputs between 4 and 620 l/s for a surface loading rate of 18 m/h, standard solutions are offered in the narrow application grid. All tank geometries (round, rectangular, oval and large container shafts) are used. Adaptations and special constructions are feasible.

Mall ViaTub lamella clarifier

Compact and volume-optimised solution as an alternative to the sedimentation plant.

Design approval of the Land of North Rhine-Westphalia (list of the State Office for the Protection of Nature, the Environment and Consumers, LANUV). Adaptations and special constructions are feasible.

Mall ViaCap dirt trap

System consisting of two tanks: Separation structure and collection basin (collecting tank). The initial heavily contaminated proportion of rainwater ("first flush") is collected and channelled into the contaminant sewerage system with time delay; less contaminated proportions are drained off into waterways. Power supply and connection to sewerage system necessary.

Mall ViaKan lamella clarifier

System consisting of separation structure and treatment tank (flow-through tank) with lamella clarifiers. Rainwater is intensively treated up to defined rainfall value Q_{crit}. Tank contents are channelled into the contaminant sewerage system with time delay. Heavy rainfall proportions (less contaminated) are drained off into waterways. Power supply and connection to sewerage system necessary.

Main application areas:

- Purification of rainwater from roof and traffic surfaces to remove fine sludge
- Upstream of waterways and infiltration systems
- Large sludge collection volumes
- Dimensioning based on surface loading rate

Main application areas:

- Purification of rainwater from roof and traffic surfaces to remove fine sludge
- Upstream of waterways and infiltration systems
- Small component dimensions
- Dimensioning based on surface loading rate

Main application areas:

- Purification of rainwater from particularly heavily contaminated (traffic) areas within a property
- Automatic basin emptying necessary after precipitation event
- Dimensioning based on flow time and critical rainfall Qcrit

Main application areas:

- Intensive purification of rainwater, including over large areas, with surface loading rate of 4 m/h
- Automatic basin emptying necessary after precipitation event
- Dimensioning based on critical rainfall Qcrit
- Satisfies criteria according to DWA A 102 (draft) and DWA A 176

Benefits of operating method without permanent retention (or automatic basin emptying)

- No sludge disposal and no sludge storage necessary (smaller structures)
- Avoidance of the undesired discharge of sludge due to unforeseen operating states
- The mode of action is much more effective particularly in the case of dissolved and very fine substances.

Prerequisites for operation without permanent retention

- Connection to wastewater (mixed water) sewerage system
- Measurement system for detecting fill level and condition of discharge (precipitation event yes/no?)
- Pump or controllable sliding gate for emptying treatment tank
- System equipment: Microprocessor controller, wastewater submersible motor pump, float switch in the area of tank base and a float probe in the area of the clarifier overflow

Mall ViaSep separation structure

System for implementing partial flows, i.e. removal of less contaminated torrential rainfall via a raised divider. Used in combination with ViaSed or ViaTub; restriction effect via downstream pipe restrictor line as a cost-effective alternative to the ViaPart series

Mall ViaPlus* substrate filter

Multi-stage system with externally monitored ViaSorp granulate for treating road wastewater according to the criteria of the German Federal Soil Protection Ordinance (BBodSchV) for the parameters filterable substances, mineral hydrocarbons, copper and zinc. Usage list based on extensive laboratory testing procedures

Mall Tecto MVS* metal-roof filter

Multi-stage system with externally monitored ViaSorp granulate for treating metal roof run-off according to the criteria of the Bavarian Water Act for the parameters copper and zinc. Usage list based on extensive field testing procedures

* DIBt approval/design approval of Bavaria

Main application areas:

- Partial flow treatment
- Only in combination with pipe restrictor line
- Dimensioning based on downstream straight piping run and line length
- Blur factor 2.0 tolerable

Main application areas:

- Requirement of DIBt design approval
- Infiltration of traffic surface run-off
- Dimensioning based on max. collection area

Main application areas:

 Requirement of Bavaria State Office for the Environment (LfU Bayern) design approval

- Infiltration of uncoated metal roof run-off
- Dimensioning based on max. collection area

Mall ViaSed and ViaTub rainwater treatment plants

Mall rainwater treatment plants of the ViaSed and ViaTub model series are used to decentrally purify rainwater in separation systems. Water, in particular collected and drained from traffic surfaces, that is intended to be channelled into waterways must be treated to minimise contamination and blockage caused by settling materials. These systems may also make sense for rainwater from other collection areas and/or discharging into groundwater (infiltration). The requirement for and intensity of treatment depends on official specifications and the sensitivity of waterways and must be checked in individual cases. The surface loading rate is the decisive parameter in the current regulations.

For ordinary values, the correlation between the following is illustrated on page 14 in table form:

- Surface loading rate [m/h] Qa Permissible plant inflow Qa [|/s]
- Treated rainfall value **r**crit [l/s * ha)]
- Cleaning effect DWA M 153 D [-]

The connectible, outlet-effective area Ai is calculated from: Ai = Q/rcrit [ha].

The different geometries and installed equipment ensure cleaning efficacy under optimal economic conditions for various flow quantities.

Mall sedimentation plants in ViaSed L and OL (oval) long design

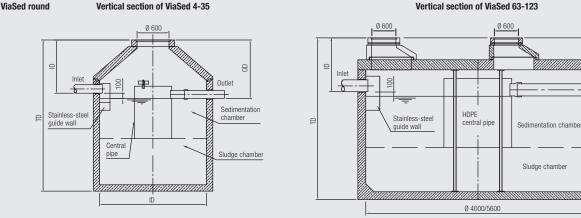
- Segmented, rectangular or oval designs facilitate discretionary tank lengths and thus effective tank surfaces.
- Mudsill (option: pump sump) facilitates maintenance; stainless-steel baffle holds back floating substances.

Mall sedimentation plants in ViaSed R round design

- Tangential discharging of wastewater flow optimises the flow path and sludge deposition.
- Central pipe with leak-free connection of outlet pipe keeps back floating substances and facilitates the central suctioning of sludge.

Mall lamella clarifier in ViaTub R round design

- Integrated lamellae bodies increase the effective area through parallel flow channels and enhance the settling capacity of sludge particles.
- Inclination ensures optimal hydraulic conditions.
- Monolithic round tank with integrated dividing wall and dip pipes installable in one piece


Mall lamella clarifier in ViaTub L and OL (oval) long design

- Segmented, rectangular or oval designs facilitate discretionary tank lengths and thus a greater number of installed lamellae packages.
- Large sludge and floating layer areas facilitate maintenance.

ViaSed measurement basis and notes

- Types ViaSed-N = systems for surfaces with normal soiling (residential streets, private courtyards etc.)
- Types ViaSed-E = systems for surfaces with heavy soiling (main transit roads, factory courtyards etc.)
- Sedimentation systems are not separators as per DIN EN 858/DIN 1999-100 and are unsuitable for surfaces for which a light liquid separator is necessary according to DIN EN 858/DIN 1999-100.
- Flow rate $v_7 < 5$ cm/s
- Retention time at nominal load $T_A > 120$ s

The systems can be equipped upon request with basin emptying after rain has stopped, i.e. operation without permanent retention.

Vertical section of ViaSed 63-123

8

Outlet

Classification of ViaSed and ViaTub rainwater treatment plants

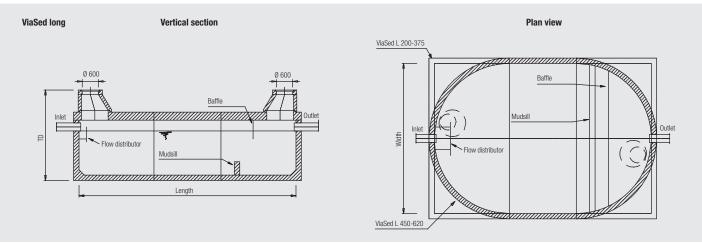
Mall rainwater treatment plant	Surface loading [m/h]	Flow Q [I/s]	Surface loading [m/h]	Flow Q [I/s]	Surface loading [m/h]	Flow Q [I/s]	Surface loading [m/h]	Flow Q [I/s]
ViaSed 18 R 4	18	4	10	2	9	2	7.5	2
ViaSed 18 R 6	18	6	10	3	9	3	7.5	3
ViaSed 18 R 9	18	9	10	5	9	5	7.5	4
ViaSed 18 R 15	18	15	10	8	9	8	7.5	6
ViaTub 18 R 20	18	20	10	11	9	10	7.5	8
ViaSed 18 R 24	18	24	10	13	9	12	7.5	10
ViaSed 18 R 35	18	35	10	19	9	18	7.5	15
ViaTub 18 R 38	18	38	10	21	9	19	7.5	16
ViaSed OL 60	18	60	10	33	9	30	7.5	25
ViaTub 18 R 63	18	63	10	35	9	32	7.5	26
ViaSed 18 R 63	18	63	10	35	9	32	7.5	26
ViaSed OL 70	18	70	10	39	9	35	7.5	29
ViaSed OL 80	18	80	10	44	9	40	7.5	33
ViaSed 18 R 123	18	123	10	68	9	62	7.5	51
ViaTub 18 L 133/OL 133	18	133	10	74	9	67	7.5	55
ViaSed 18 L 200	18	200	10	111	9	100	7.5	83
ViaSed 18 L 250	18	250	10	139	9	125	7.5	104
ViaTub 18 L 272/0L 272	18	272	10	151	9	136	7.5	113
ViaTub 18 L 302	18	302	10	167	9	151	7.5	125
ViaSed 18 L 350	18	350	10	194	9	175	7.5	146
ViaTub 18 L 406	18	406	10	226	9	203	7.5	168
ViaSed 18 L 425	18	425	10	236	9	213	7.5	177
ViaSed 18 L 450	18	450	10	250	9	225	7.5	188
ViaSed 18 L 540	18	540	10	300	9	270	7.5	225
ViaSed 18 L 620	18	620	10	344	9	310	7.5	258
ViaTub 18 L 674	18	674	10	374	9	337	7.5	281
ViaTub 18 L 1363	18	1363	10	757	9	682	7.5	568

Rainfall	T	153	SOW manual Baden-Württemberg	
Complete ¹⁾ r(15.1)	0.35	Unusual	0.2	Unusual
45 l/(s x ha)	0.65	0.5	Unusual	0.38
Partial flow ²⁾ 30 l/(s x ha)	0.7	0.55	Unusual	0.45
15 l/(s x ha)	0.8	0.65 ³⁾	Unusual	0.58

¹⁾ Measured rainfall intensity r_{crit}= r (15.1) for complete treatment of the volume flow can be safely assumed to be 150 l/(s/ha); reductions lead in individual cases to larger collection areas.

²⁾ When choosing partial flow treatment (reduction of measured rainfall intensity r_{cnl}) as per DWA-M 153, the connected surface A₁ can be increased many times or the desired throughput value adjusted to the property conditions. In this case, ViaPart or ViaSep systems (overflow or restrictor installation) must be connected upstream. Connected cable cross-sections must then be reduced in deviation from the standard specifications and adapted to the inflow volumes. For classification as per DWA A 102, partial flow treatment is also necessary in the normal case.

³⁾ Satisfies Category II criteria of requirements on rainwater draining in the separating method in North Rhine-Westphalia ("NRW separation directive").



Mall ViaSed long separation plant

- Prefabricated C 45/55 (B55) reinforced concrete tank comprising multiple elements, as closed-frame profile ViaSed 18L 250 or U-shaped profile/halfshell end profile with flat cover plate ViaSed 18L 450-620
- Flow distributor at inlet
- Baffle and mudsill
- Cover which can be driven over by passenger cars/HGVs, class B 125/D 400
- Articulated pipe connections in inlet and outlet

Order number			Total depth TD	Permiss. Q	Nominal size	Heaviest single weight	Total weight
	`mm´	mm	mm	l/s	DN	kg	kg
ViaSed 18L 200	3650/11600	2000	3380	200	2 x 300	27,260	99,950
ViaSed 18L 250	3650/14600	2000	3380	250	2 x 300	27,260	122,950
ViaSed 18L 350	5000/14000	2000	3650	350	500	31,110	99,950
ViaSed 18L 425	5000/17000	2000	3650	425	500	31,110	163,140
ViaSed 18L 450	5600/17600	2000	3850	450	600	21,120	193,720
ViaSed 18L 540	5600/20600	2000	3850	540	600	21,120	226,320
ViaSed 18L 620	5600/23600	2000	3850	620	600	21,120	258,920

Mall ViaSed round separation plant

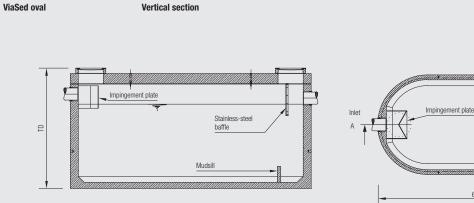
with tangential discharge of the wastewater flow for protection of infiltration systems, channel networks and recipient waters against contamination and blockage caused by settling materials upon discharge of waste reinwater from road surfaces.

- rainwater from road surfaces
- C35/45 (B45) reinforced concrete tank with monolithic round structure up to ViaSed 18R 35
- Central pipe and outlet pipe made of PEHD
- Articulated pipe connection in inlet for plastic pipe (other pipe materials on request) with multiple lip seal
- Cone and shaft cover can be driven over by passenger cars, class B 125 kN (ViaSed 18R 4 18R 35), design which can be driven over by 60 t HGVs available on request
- Stainless steel inlet fitting, flow-optimised

Order number	Interior Ø ID mm	Inlet depth ID mm	Total depth TD mm	Permiss. Q I/s	Nominal size DN	Heaviest single weight kg	Total weight kg
				1/3	DN	ĸy	ĸġ
ViaSed 18R 4N	1000	1005	2745	4	150	2,380	2,900
ViaSed 18R 4E	1000	1050	3355	4	150	1,850	3,860
ViaSed 18R 6N	1200	1005	2745	6	150	2,880	3,520
ViaSed 18R 6E	1200	1050	3335	6	150	2,520	5,200
ViaSed 18R 9N	1500	1005	2745	9	150	3,640	4,350
ViaSed 18R 9E	1500	1005	3345	9	150	4,550	5,320
ViaSed 18R 15N	2000	1005	2845	15	150	5,430	6,770
ViaSed 18R 15E	2000	1005	3345	15	150	6,430	7,770
ViaSed 18R 24N	2500	1055	2845	24	200	7,088	9,230
ViaSed 18R 24E	2500	1055	3345	24	200	8,320	10,460
ViaSed 18R 35N	3000	1100	2995	35	250	9,710 ¹⁾	12,390
ViaSed 18R 35E	3000	1100	3495	35	250	11,150 ¹⁾	13,830
ViaSed 18R 63	4000	1450	3800	63	300	10,140	31,190
ViaSed 18R 123	5600	1350	4050	123	300	21,010	64,010

Mall ViaSed oval separation plant

Prefabricated reinforced concrete tank with monolithic oval structure C 45/55 (B55)


- Flow distributor at inlet
- Baffle and mudsill

16

- Cover for loading profile "passenger cars/12 t HGVs" with class B; option: "EC2 lane 1" with class D on request
- Articulated pipe connections in inlet and outlet

Order number	Width/length mm	Total depth TD mm	Permiss. Q I/s	Nominal size DN	Heaviest single weight kg	Total weight kg
ViaSed 18 OL 60	2240/5600	2995	60	300	17,210 ¹⁾	25,270
ViaSed 18 OL 70	2240/6600	2995	70	300	19,710 ¹⁾	29,800
ViaSed 18 OL 80	2240/7600	2995	80	300	22,220 1)	33,900

¹⁾ For types ViaSed 18R 35 and ViaSed 18 OL, suitable unloading equipment is to be provided on site by the customer.

Mudsill

baffle

6000 / 7000 / 8000

Stainless-steel

Webcode M3310 Q

1

Mall ViaTub lamella clarifier

- Round C35/45 (B45) reinforced concrete tank with monolithic structure
- HDPE lamellae with stainless steel retaining structure
- Articulated pipe connection in inlet for plastic pipe (other pipe materials on request)
- Shaft cover plates, class B 125 if applicable, can be driven over by passenger cars;
- design which can be driven over by 60 t HGVs available on request
- HDPE inlet and outlet fittings, stainless steel brackets

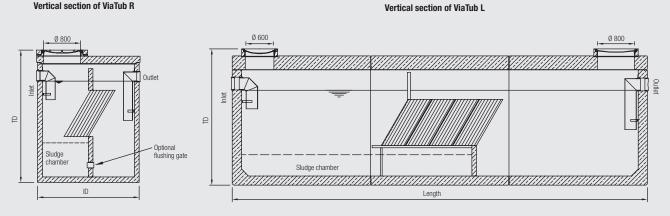
Animation at: www.mall.info/tv 1

Order number	Inner Ø ID or width/length	Total depth TD	Permiss. Q	Nominal size	Heaviest single weight	Total weight
number	mm	mm	l/s	DN	kg	kg
ViaTub 18R 20	2000	2935	20	200	7,570	9,600
ViaTub 18R 38	2500	2935	38	250	9,740	1,280
ViaTub 18R 63	3000	3115	63	300	13,450	18,390
ViaTub 18L 133*)	2400/3950	3160	133	400	22,830	29,850
ViaTub 18L 272*)	2400/5200	3180	272	400	27,800	37,790
ViaTub 18L 302	3650/5600	3370	302	400	27,040	54,590
ViaTub 18L 406	3650/8600	3370	406	500	26,310	76,350
ViaTub 18L 674	5600/8600	3580	674	600	18,780	91,810
ViaTub 18L 1363	5600/11600	3580	1363	700	19,870	126,930

*) Unloading by customer.

Specifications for dimensioning see notes on page 12

System successfully checked with respect to basic approval criteria of LANUV NRW


Mall ViaTub lamella clarifier oval

- Prefabricated reinforced concrete tank with monolithic oval structure C 45/55 (B55)
- Inlet fitting
- Baffle and mudsill
- HDPE lamellae including retaining structure
- Cover which can be driven over by passenger cars/HGVs, class B 125; option: "EC2 lane 1" with class D on request
- Articulated pipe connections in inlet and outlet

Order number	Width/length mm	Total depth TD mm	Permiss. Q I/s	Nominal size DN	Heaviest single weight kg	Total weight kg
ViaTub 18 OL 133*)	2240/5600	2965	133	400	17,310	25,370
ViaTub 18 OL 200*)	2240/5600	2965	200	400	17,310	25,410
ViaTub 18 OL 272*)	2240/6600	2965	272	400	19,810	29,900

*) Unloading by customer

Vertical section of ViaTub R

Mall ViaCap dirt trap, single tank system patented

Use

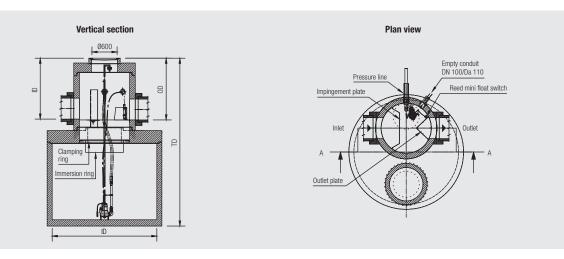
1

- Demarcated areas, within a property with increased sludge production for discharging into wastewater system
- Areas with a high proportion of industrial contamination (warehouse, loading, transfer areas)
- Fuel station and rest areas or separate HGV parking areas

Operation

The first usually highly contaminated proportion of precipitation ("first flush") is collected in the collection basin until this is filled. Subsequent water is discharged into the rainwater sewage system, the outlet channel or another treatment plant, depending on the receiving bodies of water. The system can also retain dissolved and dispersed substances. A measurement probe records the overflowing water volume via a measuring cell. If no water runs over the measuring cell for 24 hours (standard), the water in the collection basin is pumped into the wastewater system.

Components


Differs from the tried-and-tested system concept of the two tank system in that the two functions of "separation" and "collection" are integrated in the same structure.

- C35/45 (B45) reinforced concrete tank with monolithic round structure
- Reinforced concrete transition plate for supporting two entry domes for loading profile SLW/EC2
- Shaft structure for supporting equipment elements (see below) and entry option
- Stainless steel baffle ring incl. fixture for retaining light liquids
- Stainless steel impingement plate for inlet calming.
- Stainless steel overflow plate at outlet incl. bracket
- Entry dome (DN 800 to DN 1200)
- High-quality wastewater pump (free spherical passage 35 mm)
- DN 100 opening for empty conduit to switch cabinet
- Prepared connection for a HDPE pressure pipe incl. quick coupler and chain link seal
- Shaft cover class B, class D optional
- Controller for internal installation incl. sensors, controller and technical equipment available in various versions.

Order number	Interior Ø ID mm	Flow I/s	Volume I	Pipe connection DN	Total depth TD mm	Heaviest single weight kg	Total weight kg
ViaCap 75	2000	75	2500	300	2300	2,830	7,455
ViaCap 150	2000	150	5000	400	3100	4,420	9,045
ViaCap 225	2500	225	7500	500	3450	5,470	13,260
ViaCap 300	2500	300	10000	500	4000	6,830	14,600
ViaCap 375	3000	375	12500	500	3820	8,580	19,140
ViaCap 450	3000	450	15000	600	4120	10,350	21,000
ViaCap 525	3000	525	17500	600	4470	11,380	22,000
ViaCap 600	3000	600	20000	600	4820	12,410	23,000

Note

- Supply/laying of the empty conduits to the switching cabinet is the customer's responsibility
- Adjust the pipe dimensions to suit the separation structure if necessary
- Deviating pipe and shaft heights on request

Webcode M3312 Q

Animation at: www.mall.info/tv

Mall ViaPlus substrate filter patented

DIBt approvals Z-84.2-8, Z-84.2-12 and Z-84.2-25

The system satisfies the test principles of the German Institute for Civil Engineering (DIBt) relating to the treatment of precipitation water from traffic surface areas for subsequent non-hazardous underground infiltration. Site-specific restrictions and conditions (water protection zone, groundwater level, etc.) are to be taken into consideration.

Verified contaminant retention for the parameters: filterable substances (solid materials), mineral hydrocarbons (oil) and Cu, Zn (heavy metals)

Substrate filter

environmental systems

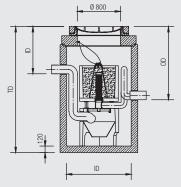
- C35/45 (45) reinforced concrete tank with monolithic round structure as per the type structure
- Hydrocyclone (sludge tank) and removable substrate filter insert pre-mounted in factory
- Articulated pipe connections DN 150 for inlet and outlet fittings, HDPE, completely pre-mounted in factory
- Cover plate for loading profile passenger cars/12 t HGVs, optionally 60 t HGVs/EC 2
- Shaft cover D = 800 mm, class B 125, class D 400 optional
- Service life/filter unit replacement interval as per approval: 3 or 4 years

Order number	Inner Ø ID / B-L mm	Connectible traffic surface area A _i m ²	Inlet/ outlet Ø DN	Flow rate Q I/s	Inlet depth ID mm	Outlet depth OD mm	Total depth TT mm	Heaviest individual weight kg	Total weight kg
ViaPlus 500 ¹⁾	1200	500	150	5.0 ¹⁾	800	1280	2255	3,370	3,920
ViaPlus 800	2000	800	150	8.0	1090	1390	2525	6,020	8,680
ViaPlus 1250	2500	1250	150	12.5	1090	1390	2525	7,680	11,810
ViaPlus 3000 2) *)	3000	3000	200	30.0 ²⁾	760	2500	2875	14,480	21,300
ViaPlus 3800*)	2 x 3000	3800	250	38.0	1220	1520	2665	10,650	33,300
ViaPlus 6600*)	2 x 2400/5200	6600	300	66.0	1390	1690	2885	27,940	79,300

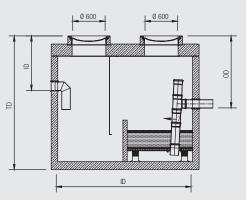
¹⁾ Max. tested hydraulic capacity: 7.5 l/s; material verification for 5 l/s

²⁾ Hydraulic capacity 45 l/s and material verification per 30 l/s – note pipe hydraulics (diameter) – emergency overflow level may diverge from design approval

*) Unloading by customer


Note

- Deviating inlet and outlet depths are possible without static loading restrictions on request.
- According to the test principles of the DIBt an arrangement containing a bypass is not normally provided.
- Corresponding applications are to be agreed with the relevant approving authorities.
- The maximum approved rain intensity is 100 I/(sxha); the hydraulic conditions are to be individually checked for each object.
- Downstream infiltration systems (e.g. CaviLine infiltration tunnel) on request
- Larger shaft and connection dimensions exceeding the approval requirements can be implemented if required.
- Performing of maintenance and inspection services on request


System successfully checked with respect to basic approval criteria of LANUV NRW.

Vertical section of ViaPlus 500

Vertical section of ViaPlus 1250

Mall Tecto MVS metal-roof filter

Design approval LfU-BY-41f-2020/1.0.0

- C35/45 (B45) reinforced concrete shaft parts in round design
- Central cone opening 625 mm
- Intermediate plate with filter basket type A DIN 1989-2, irrigation, HDPE or stainless steel
- Filter granulate (big pack) for on-site installation
- Composite geotextile as colmation protection, GRK3 filter fleece for excavation pit
- Shaft cover, class A, higher load classes on request
- Optional: Level monitor type S, see below, incl. additional hole for empty conduit

Order number	Interior Ø ID mm	Connectable roof surface area ¹⁾ m ²	Inlet and outlet ²⁾ DN	Inlet depth (standard) ID mm	Total depth TD mm	Heaviest single weight kg	Total weight kg
Tecto MVS 70	1000	70	100	1090	3380	1,000	3,750
Tecto MVS 100	1200	100	100	1090	3380	1,000	4,350
Tecto MVS 160	1500	160	100	1090	3380	1,110	5,190
Tecto MVS 290	2000	290	150	1090	3380	1,960	9,410
Tecto MVS 450	2500	450	150	1090	3380	2,420	13,980
Tecto MVS 640	3000	640	200	1090	3380	2,850	17,280

¹⁾ Separate verification for discharge into infiltration system; from experience dependent on permeability coefficient; for discharge into the sewage system. higher metal concentrations or roof areas with a bypass solution with deviating systems are possible where required.

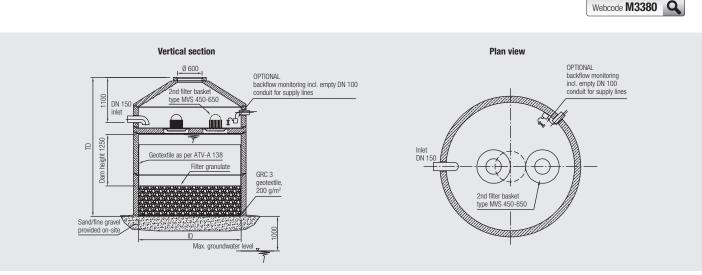
²⁾ Selection of the standard nominal diameter prevents hydraulic overloading – other options available on request.

Note:

The system is explicitly approved for the adsorption of copper and zinc. As these metals cannot be chemically converted but only extracted, regular replacement of the filter materials is necessary.

An inspection interval of one year can be assumed. The service life according to the approval specifications is 25 years.

Foundation of 25 cm of gravel sand on site. A geotextile is required to ensure filter stability below the granulate (included in scope of delivery).


The system was designed on the basis of the results of a research project at the Technical University of Munich, Germany. This yields a proven purification performance of > 97 % in relation to the metal content and an average annual effluent concentration of less than 50 myg copper/litre.

Optional:

Fill level monitoring type S, consisting of:


- Control board with transformer power pack and housing for basement installation, 230 V
- 9 V monobloc battery for acoustic alarm, 10 m cable length
- Installation accessories

Order number	Designation
611440	Fill level monitoring type S

Q

1

Mall ViaKan lamella clarifier without permanent retention

As per DWA leaflet M 176 November 2013 issue, particular structural requirements are placed on lamella clarifiers depending on their intended purpose.

The ViaKan type series fulfils these criteria, including with upstream separation structure, optimised plastic lamellae to

increase the settling effect, restricting removal system (gutter) via lamellae, sensor, float and controller to ensure automatic emptying after rain has stopped, and the specifications of draft DWA-A 102.

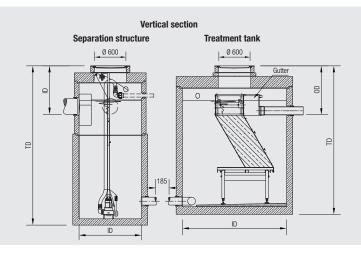
Treatment tank and separation structure

environmental systems

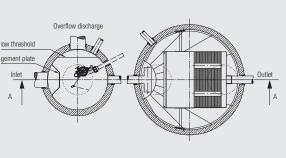
Consisting of:

- Reinforced concrete tank (up to DN 3000), for larger diameters multi-component structure
- HDPE lamellae bodies (treatment tank)
- Inlet and outlet construction, brackets made from stainless steel
- Restriction device in outlet of lamellae bodies
- Wastewater submersible motor pump (separation structure)
- Controller for internal installation incl. sensors, controller and technical equipment available in various versions
- Shaft cover, class B, higher load classes on request

	Separation	structure	Treatm	ent tank			
Order number	Interior Ø ID mm	Total depth mm	Interior Ø ID mm	Total depth mm	Design inflow I/s	Heaviest single weight kg	Total weight kg
ViaKan 4 ¹⁾	-	-	2000	2935	4	7,360	9,460
ViaKan 8	1200	3060	2000	2875	8	7,060	13,440
ViaKan 24	1200	3260	2500	3075	24	10,410	18,260
ViaKan 32*)	1500	3360	3000	3175	32	14,040	24,650
ViaKan 48	1500	3595	4000	3410	48	11,720	39,620
ViaKan 64	2000	3705	4000	3520	64	11,720	45,880
ViaKan 80	2500	4000	5600	3815	80	22,860	83,420
ViaKan 120	3000	4000	5600	3815	120	22,860	89,570
ViaKan 144	3000	4000	5600	3815	144	22,860	90.070
¹⁾ A restriction devic	e and an overflow st	tructure are alread	y integrated into the	system.		We	ebcode M3319 🔍


*) Unloading by customer

The outlet of the systems is automatically restricted to the maximum flow throughput. The surface loading rate is fixed at approx. 4 m/h in due consideration of the lamellae effect.


Connectible impermeable area AI (rounded values)

As the hydraulic throughputs of the systems are fixed, the connectible impermeable area is based on the critical rainfall that has been selected.

Order	Nominal	Standard case		Critical rainfall rcrit I/ (s*ha)	
number	throughput	15	30	45	60
	[l/s]	Permiss. A ₁ [m ²]			
ViaKan 4	4	2700	1300	900	700
ViaKan 8	8	5300	2700	1800	1300
ViaKan 24	24	16000	8000	5300	4000
ViaKan 32	32	21300	10700	7180	5300
ViaKan 48	48	32000	16000	10700	8000
ViaKan 64	64	42700	21300	14200	10700
ViaKan 80	80	53300	26700	17800	13300
ViaKan 120	120	80000	40000	26700	20000
ViaKan 144	144	96000	48000	32000	24000
Throughput value D (M153)		0.35	0.28	0.24	0.20

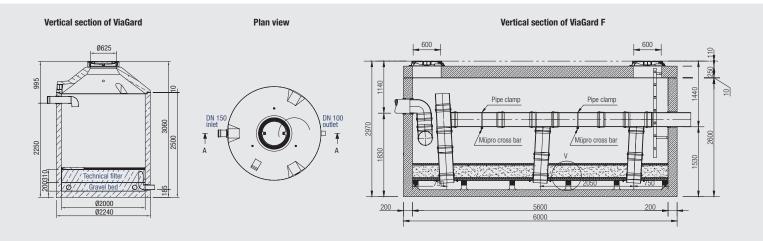
Animation at: www.mall.info/tv

Mall water protection filter with pre-filter fleece and substrate layer ViaGard

type

Webcode M3321 Q

for the treatment of heavily contaminated rainwater from traffic areas and areas with relevant amounts of uncoated metals before discharging into waterways


- * Reinforced concrete tank with monolithic structure
- Inlet and outlet opening with multi-lip seal
- Impingement plate to prevent scouring
- Patented outlet fitting for equal loading of the filter
- Pre-filter fleece for the retention of filterable substances
- Substrate layer as per Austrian standard ÖNORM B 2506-3

Туре	Inner Ø ID	Total height	Inlet depth	Storage volume	Max connected area A ₁ *	Heaviest single weight	Total weight
	mm	mm	mm	m ³	m²	kg	kg
Round tank							
ViaGard F 1200	1200	2225	1000	0.34	283	2,570	3,210
ViaGard F 1500	1500	2625	1000	0.53	442	4,000	5,155
ViaGard F 2000	2000	2725	1050	0.94	785	5,950	7,935
ViaGard F 2500	2500	2725	1150	1.47	1227	7,980	11,040
ViaGard F 3000	3000	2725	1150		1766	11,970	16,875
Oval tank							
ViaGard OF 6000	2240	2975	1000	3.43	2866	20,880	29,390
ViaGard OF 7000	2240	2975	1000	4.10	3426	25,100	34,190
ViaGard OF 8000	2240	2975	1000	7.78	3986	27,325	39,010

The use of a pre-treatment system is recommended for operating shaft infiltration configurations. Systems of type ViaSed and ViaTub are the best suited.

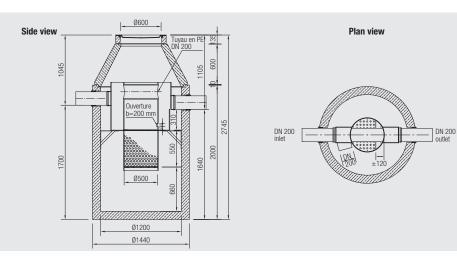
ViaGard type	Recommended ViaSed
ViaGard 15	ViaSed 18 R 9N
ViaGard 20	ViaSed 18 R 15N
ViaGard 25	ViaSed 18 R 24N
ViaGard 602530	ViaTub 18 R 38
ViaGard 702530	ViaTub 18 R 63
ViaGard 802530	ViaTub 18 R 63

* Specification of the maximum connectible surface area refers only to the filter area. The infiltration area and retention volume must be dimensioned according to Austrian standard ÖNORM B 2506-1.

Treatment of rainwater with capacity for a critical amount of precipitation

Designed particularly for the drainage of rainwater from road and car park surfaces into surface waters or for the pre-treatment of rainwater before it is routed to trenches or infiltration basins.

Run-off coefficient D as per DWA M 153 = 0.25 for rain intensity of r_{151}


- Reinforced concrete tank with a circular monolithic structure
- Inlet, treatment and outlet combined in a compact unit
- Filtration unit with spherical lamellae for optimal separation of filterable materials and to limit the outlet flow rate
- Retention of mineral hydrocarbons and filterable substances
- Outlet flow rate limited to the hydraulic capacity of the filters under normal service conditions;
- quantities of water above the critical outlet flow rate threshold are routed to a bypass around the purification unit
- Sludge-collection compartment accessible below the filter for easy removal
- Loading of the surface of the spherical lamellae < 1 m/h, relative to the interior surface of the substrate. This value corresponds to approx. 2 m/h relative to the projected surface area of the lamellae

Standard model with a cone, B125 class manhole cover

Туре	Inner Ø	Installation depth m	Operating flow rate l/s	Maximum controlled flow rate l/s	Diameter of central tube mm	Heaviest single weight kg	Total weight kg
	mm		1/5			ry	
3/15	1000	2.44	3	15	400	2,380	2,700
6/30	1200	2.74	6	30	500	2,880	3,520
9/45	1500	2.89	9	45	600	3,860	4,580
12/60	2000	2.89	12	60	700	5,520	6,870
15/75	2000	3.14	15	75	700	6,020	7,370
20/100	2000	3.59	20	100	800	6,920	8,270
25/125-2.0	2000	3.74	25	125	900	7,220	8,570
30/150-2.5	2500	3.54	30	150	1000	8,800	10,800
35/175-2.5	2500	3.64	35	175	1100	9,050	11,050
40/200-2.5	2500	3.74	40	200	1200	9,300	11,300
45/225-3.0	3000	3.64	45	225	1300	11,580	14,260
50/250-3.0	3000	3.59	50	250	1300	11,440	14,120

Accessories and wearing parts:

Filters must be maintained or replaced at regular intervals or else as necessary.

1

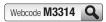
Mall water container for fire fighting

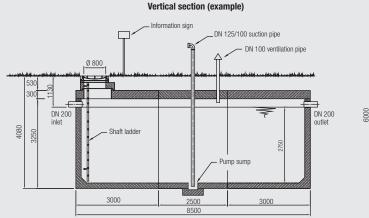
compliant with DIN 14230

- Large tank system comprising multiple elements, with prefabricated parts made of pre-cast, reinforced, quality-controlled concrete, concrete strength class C45/55 (B55), manufactured as per DIN 1045 / EN 206⁻)
- Pump sump, designed as per DIN 14230^{*})
- Air cushion as per DIN 14230

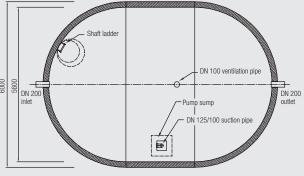
1

- Openings with FORSHEDA sealing element for inlet and emergency overflow according to plan requirements
- DN 125/100 suction pipe(s) including seal insert, suction line including stainless steel coupling 1.4301, height above ground approximately 300 mm
- DN 100 stainless steel ventilation pipe 1.4301, height above ground approximately 1000 mm, with hood and fastening material
- Reinforced plastic ladder, stainless steel entry aid with single-bar design
- Shaft superstructure as per DIN 4034 part 1
- Cover plates which can be driven over by 60 t HGVs, different load classes and lid diameters on request
- Class D 400 shaft covers*)
- "Extinguishing water suction line" information sign


Order number	Total height	Clearance height	Structural length	Structural width	Nominal volume ¹⁾	Number of suc- tion/ventilation	Heaviest single weight	Total weight
	mm	mm	mm	mm	m³	pipes items	kg	kg
LW OL 20*)	2850	2450	6000	2480	20	1	17,210	26,300
LW OL 25*)	2850	2450	7000	2480	25	1	19,710	28,400
LW OL 30*)	2850	2450	8000	2480	30	1	22,230	34,620
LW 50	2800	2300	6000	6000	50	1	18,300	62,220
LW 65	3550	3050	6000	6000	65	1	21,860	69,350
LW 100	3550	3050	8500	6000	100	1	21,860	93,230
LW 150	3550	3050	11500	6000	150	1	21,860	12.4980
LW 200	3550	3050	15000	6000	200	2	21,860	165,470
LW 300	3550	3050	21000	6000	300	2	21,860	232,150


Other volumes on request. Definition of nominal volume in due consideration of pump sump parts as per DIN 14230

For load classes and max. earth cover, see reinforced concrete tank Ø 5600 mm or oval tank (see Chapter 8)


*) Oval container types by default without pump sump, with shaft cover class B – HGV practicability on request Placement of one-piece cover plate on monolithic main tank possible without Mall assembly crew

Multi-tank systems comprising round and oval tanks on request

Plan view (example)

Webcode M3313 Q

Mall water container for fire fighting in multi-component tanks


compliant with DIN 14230

- Reinforced concrete tank in quality-controlled concrete, concrete strength class C45/55 (B55), manufactured as per DIN 1045 / EN 206
- Air cushion as per DIN 14230
- Openings with FORSHEDA sealing element for inlet and emergency overflow according to plan requirements
- DN 125 suction pipe including seal insert, suction line including stainless steel coupling 1.4301, height above ground approximately 300 mm
- DN 100 stainless steel ventilation pipe 1.4301, height above ground approximately 1000 mm, with hood and fastening material
- Reinforced plastic ladder, stainless steel entry aid with single-bar design
- Shaft superstructure as per DIN 4034 part 1
- "Extinguishing water suction line" information sign
- Shaft cover class B, adequate for fire fighting vehicles (16-t trucks)

Order number	Total height	Inner Ø	TD	Usable volume	Number of tanks	Additional tank	Heaviest single weight	Total weight
	mm	mm	mm	m ³	items	type	kg	kg
LW 20-R	3940	3000	4240	20	1	-	10,960	19,110
LW 40-R	3940	3000	4240	40	2	А	12,590	34,500
LW 50-R	3710	2500	4010	50	4	В	9,300	48,320
LW 60-R	3940	3000	4240	60	3	А	12,590	49,770
LW 80-R	3940	3000	4240	80	4	А	12,590	65,040
LW 100-R	3940	3000	4240	100	5	А	12,590	80,310
LW 120-R	3940	3000	4240	120	6	А	12,590	95,580

Additional tanks

Order number	Total height	Inner Ø	TD	Additional tank	Weight
	mm	mm	mm	type	kg
LW-R-A-Z	3250	3000	3995	А	12,530
LW-R-B-Z	3000	2500	3745	В	9,350

Webcode M3082 Q

																	-		
]]]]]						
														-					
																	-		
																	-	-	
																	-		
																		_	
														-					